Functional Characterization of the Promiscuous Prenyltransferase Responsible for Furaquinocin Biosynthesis

نویسندگان

  • Takuto匠人 Kumano熊野
  • Takeo武郎 Tomita富田
  • Makoto真 Nishiyama西山
  • Tomohisa智久 Kuzuyama葛山
چکیده

Furaquinocin is a natural polyketide-isoprenoid hybrid (meroterpenoid) that exhibits antitumor activity and is produced by the Streptomyces sp. strain KO-3988. Bioinformatic analysis of furaquinocin biosynthesis has identified Fur7 as a possible prenyltransferase that attaches a geranyl group to an unidentified polyketide scaffold. Here, we report the identification of a physiological polyketide substrate for Fur7, as well as its reaction product and the biochemical characterization of Fur7. A Streptomyces albus transformant (S. albus/pWHM-Fur2_del7) harboring the furaquinocin biosynthetic gene cluster lacking the fur7 gene did not produce furaquinocin but synthesized the novel intermediate 2-methoxy-3-methyl-flaviolin. After expression and purification from Escherichia coli, the recombinant Fur7 enzyme catalyzed the transfer of a geranyl group to 2-methoxy-3-methyl-flaviolin to yield 6-prenyl-2-methoxy-3-methyl-flaviolin and 7-O-geranyl-2-methoxy-3-methyl-flaviolin in a 10:1 ratio. The reaction proceeded independently of divalent cations. When 6-prenyl-2-methoxy-3-methyl-flaviolin was added to the culture medium of S. albus/pWHM-Fur2_del7, furaquinocin production was restored. The promiscuous substrate specificity of Fur7 was demonstrated with respect to prenyl acceptor substrates and prenyl donor substrates. The steady-state kinetic constants of Fur7 with each prenyl acceptor substrate were also calculated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis. A key factor participating in natural rubber biosynthesis.

Natural rubber from Hevea brasiliensis is a high molecular mass polymer of isoprene units with cis-configuration. The enzyme responsible for the cis-1,4-polymerization of isoprene units has been idengified as a particle-bound rubber transferase, but no gene encoding this enzyme has been cloned from rubber-producing plants. By using sequence information from the conserved regions of cis-prenyl c...

متن کامل

Biosynthesis of Silver nanoparticles using root extract of the medicinal plant Justicia adhatoda: Characterization, electrochemical behavior and applications

A facile and green approach has been developed to synthesize silver nanoparticle (Ag-NPs). This was carried out by a biosynthetic route using Justicia Adhatoda root extract as reducing and stabilizing agent. The structure, composition, average particle size (~25 nm) and surface morphology of Ag-NPs were characterized by the X-ray diffraction, transmission electron microscope and atomic...

متن کامل

Functional characterization of LePGT1, a membrane-bound prenyltransferase involved in the geranylation of p-hydroxybenzoic acid.

The AS-PT (aromatic substrate prenyltransferase) family plays a critical role in the biosynthesis of important quinone compounds such as ubiquinone and plastoquinone, although biochemical characterizations of AS-PTs have rarely been carried out because most members are membrane-bound enzymes with multiple transmembrane alpha-helices. PPTs [PHB (p-hydroxybenzoic acid) prenyltransferases] are a l...

متن کامل

Biosynthesis of Silver nanoparticles using root extract of the medicinal plant Justicia adhatoda: Characterization, electrochemical behavior and applications

A facile and green approach has been developed to synthesize silver nanoparticle (Ag-NPs). This was carried out by a biosynthetic route using Justicia Adhatoda root extract as reducing and stabilizing agent. The structure, composition, average particle size (~25 nm) and surface morphology of Ag-NPs were characterized by the X-ray diffraction, transmission electron microscope and atomic...

متن کامل

Biosynthesis and characterization of biogenic tellurium nanoparticles by using Penicillium chrysogenum PTCC 5031: A novel approach in gold biotechnology

Production of nanoparticles has been attractive by biological based fabrication as an alternative to physical and chemical approaches due to exceeding need to develop safe, reliable, clean and eco-friendly methods for the preparation of nanoparticle for pharmaceutical and biomedical applications. In the present study, biogenic tellurium nanoparticles (TeNPs) were successfully prepared using pot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 285  شماره 

صفحات  -

تاریخ انتشار 2010